Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Braz. j. biol ; 82: e235927, 2022. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1249226

RESUMO

Glutamine synthetase (GS), encoded by glnA, catalyzes the conversion of L-glutamate and ammonium to L-glutamine. This ATP hydrolysis driven process is the main nitrogen assimilation pathway in the nitrogen-fixing bacterium Azospirillum brasilense. The A. brasilense strain HM053 has poor GS activity and leaks ammonium into the medium under nitrogen fixing conditions. In this work, the glnA genes of the wild type and HM053 strains were cloned into pET28a, sequenced and overexpressed in E. coli. The GS enzyme was purified by affinity chromatography and characterized. The GS of HM053 strain carries a P347L substitution, which results in low enzyme activity and rendered the enzyme insensitive to adenylylation by the adenilyltransferase GlnE.


A glutamina sintetase (GS), codificada por glnA, catalisa a conversão de L-glutamato e amônio em L-glutamina. Este processo dependente da hidrólise de ATP é a principal via de assimilação de nitrogênio na bactéria fixadora de nitrogênio Azospirillum brasilense. A estirpe HM053 de A. brasilense possui baixa atividade GS e excreta amônio no meio sob condições de fixação de nitrogênio. Neste trabalho, os genes glnA das estirpes do tipo selvagem e HM053 foram clonados em pET28a, sequenciados e superexpressos em E. coli. A enzima GS foi purificada por cromatografia de afinidade e caracterizada. A GS da estirpe HM053 possui uma substituição P347L que resulta em baixa atividade enzimática e torna a enzima insensível à adenililação pela adenililtransferase GlnE.


Assuntos
Proteínas de Bactérias/genética , Azospirillum brasilense/enzimologia , Azospirillum brasilense/genética , Compostos de Amônio , Glutamato-Amônia Ligase/genética , Escherichia coli/genética
2.
Braz. j. biol ; 82: 1-8, 2022. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468474

RESUMO

Glutamine synthetase (GS), encoded by glnA, catalyzes the conversion of L-glutamate and ammonium to L-glutamine. This ATP hydrolysis driven process is the main nitrogen assimilation pathway in the nitrogen-fixing bacterium Azospirillum brasilense. The A. brasilense strain HM053 has poor GS activity and leaks ammonium into the medium under nitrogen fixing conditions. In this work, the glnA genes of the wild type and HM053 strains were cloned into pET28a, sequenced and overexpressed in E. coli. The GS enzyme was purified by affinity chromatography and characterized. The GS of HM053 strain carries a P347L substitution, which results in low enzyme activity and rendered the enzyme insensitive to adenylylation by the adenilyltransferase GlnE.


A glutamina sintetase (GS), codificada por glnA, catalisa a conversão de L-glutamato e amônio em L-glutamina. Este processo dependente da hidrólise de ATP é a principal via de assimilação de nitrogênio na bactéria fixadora de nitrogênio Azospirillum brasilense. A estirpe HM053 de A. brasilense possui baixa atividade GS e excreta amônio no meio sob condições de fixação de nitrogênio. Neste trabalho, os genes glnA das estirpes do tipo selvagem e HM053 foram clonados em pET28a, sequenciados e superexpressos em E. coli. A enzima GS foi purificada por cromatografia de afinidade e caracterizada. A GS da estirpe HM053 possui uma substituição P347L que resulta em baixa atividade enzimática e torna a enzima insensível à adenililação pela adenililtransferase GlnE.


Assuntos
Azospirillum brasilense/enzimologia , Azospirillum brasilense/genética , Escherichia coli , Fixação de Nitrogênio , Glutamato-Amônia Ligase/biossíntese
3.
Braz J Biol ; 82: e235927, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34076164

RESUMO

Glutamine synthetase (GS), encoded by glnA, catalyzes the conversion of L-glutamate and ammonium to L-glutamine. This ATP hydrolysis driven process is the main nitrogen assimilation pathway in the nitrogen-fixing bacterium Azospirillum brasilense. The A. brasilense strain HM053 has poor GS activity and leaks ammonium into the medium under nitrogen fixing conditions. In this work, the glnA genes of the wild type and HM053 strains were cloned into pET28a, sequenced and overexpressed in E. coli. The GS enzyme was purified by affinity chromatography and characterized. The GS of HM053 strain carries a P347L substitution, which results in low enzyme activity and rendered the enzyme insensitive to adenylylation by the adenilyltransferase GlnE.


Assuntos
Compostos de Amônio , Azospirillum brasilense , Proteínas de Bactérias , Glutamato-Amônia Ligase , Azospirillum brasilense/enzimologia , Azospirillum brasilense/genética , Proteínas de Bactérias/genética , Escherichia coli/genética , Glutamato-Amônia Ligase/genética
4.
Biochemistry ; 59(32): 2962-2973, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32697085

RESUMO

l-2-Keto-3-deoxyarabinonate (l-KDA) dehydratase (AraD) catalyzes the hydration of l-KDA to α-ketoglutaric semialdehyde in the nonphosphorylative l-arabinose pathway from bacteria and belongs to the dihydrodipicolinate synthase (DHDPS)/N-acetylneuraminate lyase (NAL) protein superfamily. All members of this superfamily, including several aldolases for l-KDA, share a common catalytic mechanism of retro-aldol fission, in which a lysine residue forms a Schiff base with the carbonyl C2 atom of the substrate, followed by proton abstraction of the substrate by a tyrosine residue as the base catalyst. Only AraD possesses a glutamine residue instead of this active site tyrosine, suggesting its involvement in catalysis. We herein determined the crystal structures of AraD from the nitrogen-fixing bacterium Azospirillum brasilense and AraD in complex with ß-hydroxypyruvate and 2-oxobutyrate, two substrate analogues, at resolutions of 1.9, 1.6, and 2.2 Å, respectively. In both of the complexed structures, the ε-nitrogen of the conserved Lys171 was covalently linked to the carbonyl C2 atom of the ligand, which was consistent with the Schiff base intermediate form, similar to other DHDPS/NAL members. A site-directed mutagenic study revealed that Glu173 and Glu200 played important roles as base catalysts, whereas Gln143 was not absolutely essential. The abstraction of one of the C3 protons of the substrate (but not the O4 hydroxyl) by Glu173 was similar to that by the (conserved) tyrosine residues in the two DHDPS/NAL members that produce α-ketoglutaric semialdehyde (d-5-keto-4-deoxygalactarate dehydratase and Δ1-pyrroline-4-hydroxy-2-carboxylate deaminase), indicating that these enzymes evolved convergently despite similarities in the overall reaction.


Assuntos
Biocatálise , Frutose-Bifosfato Aldolase/química , Frutose-Bifosfato Aldolase/metabolismo , Azospirillum brasilense/enzimologia , Frutose-Bifosfato Aldolase/genética , Ligantes , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica
5.
J Mol Biol ; 431(22): 4523-4526, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31473159

RESUMO

Bacterial NADPH-dependent glutamate synthase (GltS) is a complex iron-sulfur flavoprotein that catalyzes the reductive synthesis of two L-Glu molecules from L-Gln and 2-oxo-glutarate. GltS functional unit hosts an α-subunit (αGltS) and a ß-subunit (ßGltS) that assemble in different αß oligomers in solution. Here, we present the cryo-electron microscopy structures of Azospirillum brasilense GltS in four different oligomeric states (α4ß3, α4ß4, α6ß4 and α6ß6, in the 3.5- to 4.1-Å resolution range). Our study provides a comprehensive GltS model that details the inter-protomeric assemblies and allows unequivocal location of the FAD cofactor and of two electron transfer [4Fe-4S]+1,+2 clusters within ßGltS.


Assuntos
Azospirillum brasilense/enzimologia , Microscopia Crioeletrônica/métodos , Glutamato Sintase/metabolismo , Glutamato Sintase/ultraestrutura , Catálise , Transporte de Elétrons , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/ultraestrutura
6.
FEBS Lett ; 593(11): 1257-1266, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31058311

RESUMO

In Azospirillum brasilense, a gram-negative nitrogen-fixing bacterium, l-arabinose is converted to α-ketoglutarate through a nonphosphorylative metabolic pathway. In the first step in the pathway, l-arabinose is oxidized to l-arabino-γ-lactone by NAD(P)-dependent l-arabinose 1-dehydrogenase (AraDH) belonging to the glucose-fructose oxidoreductase/inositol dehydrogenase/rhizopine catabolism protein (Gfo/Idh/MocA) family. Here, we determined the crystal structures of apo- and NADP-bound AraDH at 1.5 and 2.2 Å resolutions, respectively. A docking model of l-arabinose and NADP-bound AraDH and structure-based mutational analyses suggest that Lys91 or Asp169 serves as a catalytic base and that Glu147, His153, and Asn173 are responsible for substrate recognition. In particular, Asn173 may play a role in the discrimination between l-arabinose and d-xylose, the C4 epimer of l-arabinose.


Assuntos
Azospirillum brasilense/enzimologia , Proteínas de Bactérias/química , Desidrogenases de Carboidrato/química , Domínio Catalítico , Arabinose/química , Arabinose/metabolismo , Proteínas de Bactérias/metabolismo , Desidrogenases de Carboidrato/metabolismo , Simulação de Acoplamento Molecular , Especificidade por Substrato
7.
Appl Environ Microbiol ; 84(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30217849

RESUMO

The genome of Azospirillum brasilense encodes five RpoH sigma factors: two OxyR transcription regulators and three catalases. The aim of this study was to understand the role they play during oxidative stress and their regulatory interconnection. Out of the 5 paralogs of RpoH present in A. brasilense, inactivation of only rpoH1 renders A. brasilense heat sensitive. While transcript levels of rpoH1 were elevated by heat stress, those of rpoH3 and rpoH5 were upregulated by H2O2 Catalase activity was upregulated in A. brasilense and its rpoH::km mutants in response to H2O2 except in the case of the rpoH5::km mutant, suggesting a role for RpoH5 in regulating inducible catalase. Transcriptional analysis of the katN, katAI, and katAII genes revealed that the expression of katN and katAII was severely compromised in the rpoH3::km and rpoH5::km mutants, respectively. Regulation of katN and katAII by RpoH3 and RpoH5, respectively, was further confirmed in an Escherichia coli two-plasmid system. Regulation of katAII by OxyR2 was evident by a drastic reduction in growth, KatAII activity, and katAII::lacZ expression in an oxyR2::km mutant. This study reports the involvement of RpoH3 and RpoH5 sigma factors in regulating oxidative stress response in alphaproteobacteria. We also report the regulation of an inducible catalase by a cascade of alternative sigma factors and an OxyR. Out of the three catalases in A. brasilense, those corresponding to katN and katAII are regulated by RpoH3 and RpoH5, respectively. The expression of katAII is regulated by a cascade of RpoE1→RpoH5 and OxyR2.IMPORTANCEIn silico analysis of the A. brasilense genome showed the presence of multiple paralogs of genes involved in oxidative stress response, which included 2 OxyR transcription regulators and 3 catalases. So far, Deinococcus radiodurans and Vibrio cholerae are known to harbor two paralogs of OxyR, and Sinorhizobium meliloti harbors three catalases. We do not yet know how the expression of multiple catalases is regulated in any bacterium. Here we show the role of multiple RpoH sigma factors and OxyR in regulating the expression of multiple catalases in A. brasilense Sp7. Our work gives a glimpse of systems biology of A. brasilense used for responding to oxidative stress.


Assuntos
Azospirillum brasilense/enzimologia , Catalase/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Proteínas de Choque Térmico/metabolismo , Proteínas Repressoras/metabolismo , Fator sigma/metabolismo , Fatores de Transcrição/metabolismo , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Catalase/metabolismo , Proteínas de Choque Térmico/genética , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Fator sigma/genética , Fatores de Transcrição/genética
8.
J Biol Chem ; 293(19): 7397-7407, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29581233

RESUMO

NADH (NAD+) and its reduced form NADH serve as cofactors for a variety of oxidoreductases that participate in many metabolic pathways. NAD+ also is used as substrate by ADP-ribosyl transferases and by sirtuins. NAD+ biosynthesis is one of the most fundamental biochemical pathways in nature, and the ubiquitous NAD+ synthetase (NadE) catalyzes the final step in this biosynthetic route. Two different classes of NadE have been described to date: dimeric single-domain ammonium-dependent NadENH3 and octameric glutamine-dependent NadEGln, and the presence of multiple NadE isoforms is relatively common in prokaryotes. Here, we identified a novel dimeric group of NadEGln in bacteria. Substrate preferences and structural analyses suggested that dimeric NadEGln enzymes may constitute evolutionary intermediates between dimeric NadENH3 and octameric NadEGln The characterization of additional NadE isoforms in the diazotrophic bacterium Azospirillum brasilense along with the determination of intracellular glutamine levels in response to an ammonium shock led us to propose a model in which these different NadE isoforms became active accordingly to the availability of nitrogen. These data may explain the selective pressures that support the coexistence of multiple isoforms of NadE in some prokaryotes.


Assuntos
Adaptação Fisiológica , Azospirillum brasilense/enzimologia , Evolução Biológica , Glutamina/metabolismo , Herbaspirillum/enzimologia , Mycobacterium tuberculosis/enzimologia , Amida Sintases/química , Amida Sintases/metabolismo , Sequência de Aminoácidos , Amônia/metabolismo , Azospirillum brasilense/metabolismo , Azospirillum brasilense/fisiologia , Catálise , Herbaspirillum/metabolismo , Herbaspirillum/fisiologia , Cinética , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/fisiologia , NAD/metabolismo , Filogenia , Multimerização Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
9.
Can J Microbiol ; 64(2): 107-118, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29141156

RESUMO

Azospirillum brasilense can swim and swarm owing to the activity of a constitutive polar flagellum (Fla) and inducible lateral flagella (Laf), respectively. Experimental data on the regulation of the Fla and Laf assembly in azospirilla are scarce. Here, the coding sequence (CDS) AZOBR_p1160043 (fabG1) for a putative 3-oxoacyl-[acyl-carrier protein (ACP)] reductase was found essential for the construction of both types of flagella. In an immotile leaky Fla- Laf- fabG1::Omegon-Km mutant, Sp245.1610, defects in flagellation and motility were fully complemented by expressing the CDS AZOBR_p1160043 from plasmid pRK415. When pRK415 with the cloned CDS AZOBR_p1160045 (fliC) for a putative 65.2 kDa Sp245 Fla flagellin was transferred into the Sp245.1610 cells, the bacteria also became able to assemble a motile single flagellum. Some cells, however, had unusual swimming behavior, probably because of the side location of the organelle. Although the assembly of Laf was not restored in Sp245.1610 (pRK415-p1160045), this strain was somewhat capable of swarming motility. We propose that the putative 3-oxoacyl-[ACP] reductase encoded by the CDS AZOBR_p1160043 plays a role in correct flagellar location in the cell envelope and (or) in flagellar modification(s), which are also required for the inducible construction of Laf and for proper swimming and swarming motility of A. brasilense Sp245.


Assuntos
3-Oxoacil-(Proteína Carreadora de Acil) Redutase/genética , Azospirillum brasilense/enzimologia , Azospirillum brasilense/genética , Flagelos/genética , Plasmídeos/genética , Dobramento de Proteína
10.
Sci Rep ; 7(1): 17155, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29214999

RESUMO

3-Hydroxypropionic acid (3-HP) can be produced via the biological route involving two enzymatic reactions: dehydration of glycerol to 3-hydroxypropanal (3-HPA) and then oxidation to 3-HP. However, commercial production of 3-HP using recombinant microorganisms has been hampered with several problems, some of which are associated with the toxicity of 3-HPA and the efficiency of NAD+ regeneration. We engineered α-ketoglutaric semialdehyde dehydrogenase (KGSADH) from Azospirillum brasilense for the second reaction to address these issues. The residues in the binding sites for the substrates, 3-HPA and NAD+, were randomized, and the resulting libraries were screened for higher activity. Isolated KGSADH variants had significantly lower Km values for both the substrates. The enzymes also showed higher substrate specificities for aldehyde and NAD+, less inhibition by NADH, and greater resistance to inactivation by 3-HPA than the wild-type enzyme. A recombinant Pseudomonas denitrificans strain with one of the engineered KGSADH variants exhibited less accumulation of 3-HPA, decreased levels of inactivation of the enzymes, and higher cell growth than that with the wild-type KGSADH. The flask culture of the P. denitrificans strain with the mutant KGSADH resulted in about 40% increase of 3-HP titer (53 mM) compared with that using the wild-type enzyme (37 mM).


Assuntos
Aldeído Oxirredutases/metabolismo , Azospirillum brasilense/enzimologia , Proteínas de Bactérias/metabolismo , Gliceraldeído/análogos & derivados , Ácido Láctico/análogos & derivados , NAD/metabolismo , Propano/metabolismo , Engenharia de Proteínas/métodos , Aldeído Oxirredutases/química , Gliceraldeído/metabolismo , Glicerol/metabolismo , Ácido Láctico/metabolismo , Conformação Proteica , Especificidade por Substrato
11.
J Bacteriol ; 199(16)2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28559297

RESUMO

Hydroxyprolines, such as trans-4-hydroxy-l-proline (T4LHyp), trans-3-hydroxy-l-proline (T3LHyp), and cis-3-hydroxy-l-proline (C3LHyp), are present in some proteins including collagen, plant cell wall, and several peptide antibiotics. In bacteria, genes involved in the degradation of hydroxyproline are often clustered on the genome (l-Hyp gene cluster). We recently reported that an aconitase X (AcnX)-like hypI gene from an l-Hyp gene cluster functions as a monomeric C3LHyp dehydratase (AcnXType I). However, the physiological role of C3LHyp dehydratase remained unclear. We here demonstrate that Azospirillum brasilense NBRC 102289, an aerobic nitrogen-fixing bacterium, robustly grows using not only T4LHyp and T3LHyp but also C3LHyp as the sole carbon source. The small and large subunits of the hypI gene (hypIS and hypIL, respectively) from A. brasilense NBRC 102289 are located separately from the l-Hyp gene cluster and encode a C3LHyp dehydratase with a novel heterodimeric structure (AcnXType IIa). A strain disrupted in the hypIS gene did not grow on C3LHyp, suggesting its involvement in C3LHyp metabolism. Furthermore, C3LHyp induced transcription of not only the hypI genes but also the hypK gene encoding Δ1-pyrroline-2-carboxylate reductase, which is involved in T3LHyp, d-proline, and d-lysine metabolism. On the other hand, the l-Hyp gene cluster of some other bacteria contained not only the AcnXType IIa gene but also two putative proline racemase-like genes (hypA1 and hypA2). Despite having the same active sites (a pair of Cys/Cys) as hydroxyproline 2-epimerase, which is involved in the metabolism of T4LHyp, the dominant reaction by HypA2 was clearly the dehydration of T3LHyp, a novel type of T3LHyp dehydratase that differed from the known enzyme (Cys/Thr).IMPORTANCE More than 50 years after the discovery of trans-4-hydroxy-l-proline (generally called l-hydroxyproline) degradation in aerobic bacteria, its genetic and molecular information has only recently been elucidated. l-Hydroxyproline metabolic genes are often clustered on bacterial genomes. These loci frequently contain a hypothetical gene(s), whose novel enzyme functions are related to the metabolism of trans-3-hydroxyl-proline and/or cis-3-hydroxyl-proline, a relatively rare l-hydroxyproline in nature. Several l-hydroxyproline metabolic enzymes show no sequential similarities, suggesting their emergence by convergent evolution. Furthermore, transcriptional regulation by trans-4-hydroxy-l-proline, trans-3-hydroxy-l-proline, and/or cis-3-hydroxy-l-proline significantly differs between bacteria. The results of the present study show that several l-hydroxyprolines are available for bacteria as carbon and energy sources and may contribute to the discovery of potential metabolic pathways of another hydroxyproline(s).


Assuntos
Azospirillum brasilense/enzimologia , Hidroliases/isolamento & purificação , Hidroliases/metabolismo , Hidroxiprolina/metabolismo , Azospirillum brasilense/genética , Azospirillum brasilense/crescimento & desenvolvimento , Azospirillum brasilense/metabolismo , Carbono/metabolismo , Técnicas de Inativação de Genes , Hidroxiprolina/genética , Família Multigênica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transcrição Gênica
12.
J Bacteriol ; 199(13)2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28439037

RESUMO

Azospirillum brasilense Sp7 uses glycerol as a carbon source for growth and nitrogen fixation. When grown in medium containing glycerol as a source of carbon, it upregulates the expression of a protein which was identified as quinoprotein alcohol dehydrogenase (ExaA). Inactivation of exaA adversely affects the growth of A. brasilense on glycerol. A determination of the transcription start site of exaA revealed an RpoN-dependent -12/-24 promoter consensus. The expression of an exaA::lacZ fusion was induced maximally by glycerol and was dependent on σ54 Bioinformatic analysis of the sequence flanking the -12/-24 promoter revealed a 17-bp sequence motif with a dyad symmetry of 6 nucleotides upstream of the promoter, the disruption of which caused a drastic reduction in promoter activity. The electrophoretic mobility of a DNA fragment containing the 17-bp sequence motif was retarded by purified EraR, a LuxR-type transcription regulator that is transcribed divergently from exaA EraR also showed a positive interaction with RpoN in two-hybrid and pulldown assays.IMPORTANCE Quinoprotein alcohol dehydrogenase (ExaA) plays an important role in the catabolism of alcohols in bacteria. Although exaA expression is thought to be regulated by a two-component system consisting of EraS and EraR, the mechanism of regulation was not known. This study shows the details of the regulation of expression of the exaA gene in A. brasilense We have shown here that exaA of A. brasilense is maximally induced by glycerol and harbors a σ54-dependent promoter. The response regulator EraR binds to an inverted repeat located upstream of the exaA promoter. This study shows that a LuxR-type response regulator (EraR) binds upstream of the exaA gene and physically interacts with σ54 The unique feature of this regulation is that EraR is a LuxR-type transcription regulator that lacks the GAFTGA motif, a characteristic feature of the enhancer binding proteins that are known to interact with σ54 in other bacteria.


Assuntos
Oxirredutases do Álcool/metabolismo , Azospirillum brasilense/enzimologia , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Glicerol/metabolismo , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Proteínas Repressoras/genética , Transativadores/genética
13.
Sci Rep ; 7: 46005, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28393833

RESUMO

3-Hydroxypropionic acid (3-HP) is an important platform chemical to be converted to acrylic acid and acrylamide. Aldehyde dehydrogenase (ALDH), an enzyme that catalyzes the reaction of 3-hydroxypropionaldehyde (3-HPA) to 3-HP, determines 3-HP production rate during the conversion of glycerol to 3-HP. To elucidate molecular mechanism of 3-HP production, we determined the first crystal structure of a 3-HP producing ALDH, α-ketoglutarate-semialdehyde dehydrogenase from Azospirillum basilensis (AbKGSADH), in its apo-form and in complex with NAD+. Although showing an overall structure similar to other ALDHs, the AbKGSADH enzyme had an optimal substrate binding site for accepting 3-HPA as a substrate. Molecular docking simulation of 3-HPA into the AbKGSADH structure revealed that the residues Asn159, Gln160 and Arg163 stabilize the aldehyde- and the hydroxyl-groups of 3-HPA through hydrogen bonds, and several hydrophobic residues, such as Phe156, Val286, Ile288, and Phe450, provide the optimal size and shape for 3-HPA binding. We also compared AbKGSADH with other reported 3-HP producing ALDHs for the crucial amino acid residues for enzyme catalysis and substrate binding, which provides structural implications on how these enzymes utilize 3-HPA as a substrate.


Assuntos
Aldeído Desidrogenase/química , Aldeído Desidrogenase/metabolismo , Azospirillum brasilense/enzimologia , Ácido Láctico/análogos & derivados , Sequência de Aminoácidos , Sítios de Ligação , Biocatálise , Ácido Láctico/biossíntese , Ácido Láctico/química , Simulação de Acoplamento Molecular , NAD/metabolismo , NADP/metabolismo , Eletricidade Estática , Especificidade por Substrato
14.
Microbiology (Reading) ; 162(10): 1870-1883, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27557935

RESUMO

OxyR proteins are LysR-type transcriptional regulators, which play an important role in responding to oxidative stress in bacteria. Azospirillum brasilense Sp7 harbours two copies of OxyR. The inactivation of the oxyR1, the gene organized divergently to ahpC in A. brasilense Sp7, led to an increased tolerance to alkyl hydroperoxides, which was corroborated by an increase in alkyl hydroperoxide reductase (AhpC) activity, enhanced expression of ahpC :lacZ fusion and increased synthesis of AhpC protein in the oxyR1::km mutant. The upstream region of ahpC promoter harboured a putative OxyR binding site, T-N11-A. Mutation of T, A or both in the T-N11-Amotif caused derepression of ahpC in A. brasilense suggesting that T-N11-A might be the binding site for a negative regulator. Retardation of the electrophoretic mobility of the T-N11-A motif harbouring oxyR1-ahpC intergenic DNA by recombinant OxyR1, under reducing as well as oxidizing conditions, indicated that OxyR1 acts as a negative regulator of ahpC in A. brasilense. Sequence of the promoter of ahpC, predicted on the basis of transcriptional start site, and an enhanced expression of ahpC:lacZ fusion in chrR2::km mutant background suggested that ahpC promoter was RpoE2 dependent. Thus, this study shows that in A. brasilense Sp7, ahpC expression is regulated negatively by OxyR1 but is regulated positively by RpoE2, an oxidative-stress-responsive sigma factor. It also shows that OxyR1 regulates the expression RpoE1, which is known to play an important role during photooxidative stress in A. brasilense.


Assuntos
Azospirillum brasilense/enzimologia , Proteínas de Bactérias/genética , Regulação Enzimológica da Expressão Gênica , Peroxirredoxinas/genética , Proteínas Repressoras/metabolismo , Fator sigma/metabolismo , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Regulação Bacteriana da Expressão Gênica , Peroxirredoxinas/metabolismo , Proteínas Repressoras/genética , Fator sigma/genética
15.
BMC Bioinformatics ; 17(Suppl 18): 455, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28105917

RESUMO

BACKGROUND: Azopirillum brasilense is a plant-growth promoting nitrogen-fixing bacteria that is used as bio-fertilizer in agriculture. Since nitrogen fixation has a high-energy demand, the reduction of N2 to NH4+ by nitrogenase occurs only under limiting conditions of NH4+ and O2. Moreover, the synthesis and activity of nitrogenase is highly regulated to prevent energy waste. In A. brasilense nitrogenase activity is regulated by the products of draG and draT. The product of the draB gene, located downstream in the draTGB operon, may be involved in the regulation of nitrogenase activity by an, as yet, unknown mechanism. RESULTS: A deep in silico analysis of the product of draB was undertaken aiming at suggesting its possible function and involvement with DraT and DraG in the regulation of nitrogenase activity in A. brasilense. In this work, we present a new artificial intelligence strategy for protein classification, named ProClaT. The features used by the pattern recognition model were derived from the primary structure of the DraB homologous proteins, calculated by a ProClaT internal algorithm. ProClaT was applied to this case study and the results revealed that the A. brasilense draB gene codes for a protein highly similar to the nitrogenase associated NifO protein of Azotobacter vinelandii. CONCLUSIONS: This tool allowed the reclassification of DraB/NifO homologous proteins, hypothetical, conserved hypothetical and those annotated as putative arsenate reductase, ArsC, as NifO-like. An analysis of co-occurrence of draB, draT, draG and of other nif genes was performed, suggesting the involvement of draB (nifO) in nitrogen fixation, however, without the definition of a specific function.


Assuntos
Azospirillum brasilense/química , Azospirillum brasilense/enzimologia , Proteínas de Bactérias/química , Biologia Computacional/métodos , Nitrogenase/química , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biologia Computacional/instrumentação , Genes Bacterianos , Fixação de Nitrogênio , Nitrogenase/genética , Nitrogenase/metabolismo , Óperon
16.
Prikl Biokhim Mikrobiol ; 52(4): 377-82, 2016.
Artigo em Russo | MEDLINE | ID: mdl-29512969

RESUMO

The accumulation of nanoparticles of colloidal silver with spherical shape in culture liquid of Azospirillum brasilense has been shown by transmission electron microscopy. Bacterial extracellular Mn-peroxidases were found to participate in silver reduction from silver nitrate with the formation of nanoparticles. A mechanism of extracellular biosynthesis of silver nanoparticles by A. brasilense bacteria was proposed


Assuntos
Azospirillum brasilense/enzimologia , Proteínas de Bactérias/química , Nanopartículas Metálicas/química , Peroxidase/química , Prata/química
17.
Res Microbiol ; 167(3): 190-201, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26708984

RESUMO

In bacteria, proteins containing GGDEF domains are involved in production of the second messenger c-di-GMP. Here we report that the cdgA gene encoding diguanylate cyclase A (CdgA) is involved in biofilm formation and exopolysaccharide (EPS) production in Azospirillum brasilense Sp7. Biofilm quantification using crystal violet staining revealed that inactivation of cdgA decreased biofilm formation. In addition, confocal laser scanning microscopy analysis of green-fluorescent protein-labeled bacteria showed that, during static growth, the biofilms had differential levels of development: bacteria harboring a cdgA mutation exhibited biofilms with considerably reduced thickness compared with those of the wild-type Sp7 strain. Moreover, DNA-specific staining and treatment with DNase I, and epifluorescence studies demonstrated that extracellular DNA and EPS are components of the biofilm matrix in Azospirillum. After expression and purification of the CdgA protein, diguanylate cyclase activity was detected. The enzymatic activity of CdgA-producing cyclic c-di-GMP was determined using GTP as a substrate and flavin adenine dinucleotide (FAD(+)) and Mg(2)(+) as cofactors. Together, our results revealed that A. brasilense possesses a functional c-di-GMP biosynthesis pathway.


Assuntos
Azospirillum brasilense/enzimologia , Azospirillum brasilense/fisiologia , Biofilmes/crescimento & desenvolvimento , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Polissacarídeos Bacterianos/biossíntese , Azospirillum brasilense/genética , Técnicas Bacteriológicas , Coenzimas/metabolismo , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/isolamento & purificação , Flavina-Adenina Dinucleotídeo/metabolismo , Guanosina Trifosfato/metabolismo , Magnésio/metabolismo , Microscopia Confocal , Fósforo-Oxigênio Liases/isolamento & purificação , Coloração e Rotulagem
18.
Bioresour Technol ; 159: 455-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24713235

RESUMO

The production of L-arabonate and D-galactonate employing a versatile l-arabinose dehydrogenase (AraDH) from Azospirillum brasilense is presented. The promiscuity of AraDH is manifested by its appreciable activity towards L-arabinose and D-galactose as substrates, and NAD(+) and NADP(+) as cofactors. The AraDH was introduced into an engineered Escherichia coli with inactive L-arabinose or D-galactose metabolism, resulting in strains EMA2 and EWG4, respectively. EMA2 produced 43.9 g L(-1)L-arabonate with a productivity of 1.22 g L(-1)h(-1) and 99.1% (mol/mol) yield. After methanol precipitation, 92.6% of L-arabonate potassium salt was recovered with a purity of 88.8%. Meanwhile, EWG4 produced 24.0 g L(-1)D-galactonate, which is 36% higher than that of the strain carrying the specific d-galactose dehydrogenase. Overall results reveal that the versatility of AraDH to efficiently catalyze the formation of L-arabonate and D-galactonate could be a useful tool in advancing industrial viability for sugar acids production.


Assuntos
Azospirillum brasilense/enzimologia , Desidrogenases de Carboidrato/metabolismo , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Açúcares Ácidos/metabolismo , Ácido Acético/metabolismo , Arabinose/farmacologia , Biomassa , Escherichia coli/efeitos dos fármacos , Galactose/farmacologia , Glucose/metabolismo , Açúcares Ácidos/química
19.
Appl Microbiol Biotechnol ; 98(10): 4625-36, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24573606

RESUMO

The genome of Azospirillum brasilense harbors a gene encoding S-adenosylmethionine-dependent methyltransferase, which is located downstream of an arsenate reductase gene. Both genes are cotranscribed and translationally coupled. When they were cloned and expressed individually in an arsenate-sensitive strain of Escherichia coli, arsenate reductase conferred tolerance to arsenate; however, methyltransferase failed to do so. Sequence analysis revealed that methyltransferase was more closely related to a PrmB-type N5-glutamine methyltransferase than to the arsenate detoxifying methyltransferase ArsM. Insertional inactivation of prmB gene in A. brasilense resulted in an increased sensitivity to chloramphenicol and resistance to tiamulin and clindamycin, which are known to bind at the peptidyl transferase center (PTC) in the ribosome. These observations suggested that the inability of prmB:km mutant to methylate L3 protein might alter hydrophobicity in the antibiotic-binding pocket of the PTC, which might affect the binding of chloramphenicol, clindamycin, and tiamulin differentially. This is the first report showing the role of PrmB-type N5-glutamine methyltransferases in conferring resistance to tiamulin and clindamycin in any bacterium.


Assuntos
Antibacterianos/farmacologia , Arseniato Redutases/metabolismo , Azospirillum brasilense/efeitos dos fármacos , Azospirillum brasilense/enzimologia , Farmacorresistência Bacteriana , Metiltransferases/metabolismo , Antibacterianos/metabolismo , Arseniato Redutases/genética , Azospirillum brasilense/genética , Cloranfenicol/metabolismo , Cloranfenicol/farmacologia , Clindamicina/metabolismo , Clindamicina/farmacologia , Clonagem Molecular , Diterpenos/metabolismo , Diterpenos/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Técnicas de Inativação de Genes , Metiltransferases/genética , Mutagênese Insercional , Ribossomos/metabolismo
20.
Mol Microbiol ; 91(4): 751-61, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24329683

RESUMO

The PII family comprises a group of widely distributed signal transduction proteins. The archetypal function of PII is to regulate nitrogen metabolism in bacteria. As PII can sense a range of metabolic signals, it has been suggested that the number of metabolic pathways regulated by PII may be much greater than described in the literature. In order to provide experimental evidence for this hypothesis a PII protein affinity column was used to identify PII targets in Azospirillum brasilense. One of the PII partners identified was the biotin carboxyl carrier protein (BCCP), a component of the acetyl-CoA carboxylase which catalyses the committed step in fatty acid biosynthesis. As BCCP had been previously identified as a PII target in Arabidopsis thaliana we hypothesized that the PII -BCCP interaction would be conserved throughout Bacteria. In vitro experiments using purified proteins confirmed that the PII -BCCP interaction is conserved in Escherichia coli. The BCCP-PII interaction required MgATP and was dissociated by increasing 2-oxoglutarate. The interaction was modestly affected by the post-translational uridylylation status of PII ; however, it was completely dependent on the post-translational biotinylation of BCCP.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Azospirillum brasilense/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Trifosfato de Adenosina/metabolismo , Arabidopsis/enzimologia , Escherichia coli/enzimologia , Ácido Graxo Sintase Tipo II/metabolismo , Ácidos Cetoglutáricos/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...